5 research outputs found

    Development of an Off-Grid Solar-Powered Autonomous Chemical Mini-Plant for Producing Fine Chemicals

    Get PDF
    Photochemistry using inexhaustible solar energy is an eco-friendly way to produce fine chemicals outside the typical laboratory or chemical plant environment. However, variations in solar irradiation conditions and the need for an external energy source to power electronic components limits the accessibility of this approach. In this work, a chemical solar-driven ā€œmini-plantā€ centred around a scaled-up luminescent solar concentrator photomicroreactor (LSC-PM) was built. To account for the variations in solar irradiance at ground level and passing clouds, a responsive control system was designed that rapidly adapts the flow rate of the reagents to the light received by the reaction channels. Supplying the plant with solar panels, integrated into the module by placing it behind the LSC to utilize the transmitted fraction of the solar irradiation, allowed this setup to be self-sufficient and fully operational off-grid. Such a system can shine in isolated environments and in a distributed manufacturing world, allowing to decentralize the production of fine chemicals

    A convenient numbering-up strategy for the scale-up of gas-liquid photoredox catalysis in flow

    No full text
    Visible-light photocatalysis is a mild activation method for small molecules and enables a wide variety of transformations relevant for organic synthetic chemistry. However, one of the limitations of photocatalysis and photochemistry in general is the limited scalability due to the absorption of light (Lambertā€“Beer law). Here, we report the development of a convenient numbering-up strategy for the scale-up of gasā€“liquid photocatalytic reactions in which the gas is consumed. Only commercially available constituents were used and the system can be rapidly assembled by any practitioner of flow chemistry. The modular design allows us to systematically scale the photochemistry within 2n parallel reactors (herein, n = 0, 1, 2, 3). The flow distribution in the absence of reactions was excellent, showing a standard deviation less than 5%. Next, we used the numbered-up photomicroreactor assembly to enable the scale-up of the photocatalytic aerobic oxidation of thiols to disulfides. The flow distribution was again very good with a standard deviation lower than 10%. The yield of the target disulfide in the numbered-up assemblies was comparable to the results obtained in a single device demonstrating the feasibility of our approach

    A mechanistic investigation of the visible light photocatalytic trifluoromethylation of heterocycles using CF3I in flow

    No full text
    Photocatalytic radical trifluoromethylation strategies have impacted the synthesis of trifluoromethyl-containing molecules. However, mechanistic aspects concerning such transformations remain poorly understood. Here, we describe in detail the mechanism of the visible-light photocatalytic trifluoromethylation of N-methylpyrrole with gaseous CF3I in flow. The use of continuous-flow microreactor technology allowed for the determination of different important parameters with high precision (e.g., photon flux, quantum yield, reaction rate constants) and for the handling of CF3I in a convenient manner. Our data indicates that the reaction occurs through a reductive quenching mechanism and that there is no radical chain process present
    corecore